Nanometer-thin solid-state nanopores by cold ion beam sculpting.

نویسندگان

  • Aaron T Kuan
  • Jene A Golovchenko
چکیده

Recent work on protein nanopores indicates that single molecule characterization (including DNA sequencing) is possible when the length of the nanopore constriction is about a nanometer. Solid-state nanopores offer advantages in stability and tunability, but a scalable method for creating nanometer-thin solid-state pores has yet to be demonstrated. Here we demonstrate that solid-state nanopores with nanometer-thin constrictions can be produced by "cold ion beam sculpting," an original method that is broadly applicable to many materials, is easily scalable, and requires only modest instrumentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of fabrication-dependent shape and composition of solid-state nanopores on single nanoparticle detection.

Solid-state nanopores can be fabricated in a variety of ways and form the basis for label-free sensing of single nanoparticles: as individual nanoparticles traverse the nanopore, they alter the ionic current across it in a characteristic way. Typically, nanopores are described by the diameter of their limiting aperture, and less attention has been paid to other, fabrication-dependent parameters...

متن کامل

Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis

Nanometer-sized pores can be used to detect and characterize biopolymers, such as DNA, RNA, and polypeptides, with single-molecule resolution. Experiments performed with the 1.5 nm pore a-hemolysin (a-HL) demonstrated that singlestranded DNA and RNA molecules can be electrophoretically threaded through a pore, and that the ion current flowing through the pore contains information about the biop...

متن کامل

Control of shape and material composition of solid-state nanopores.

Solid-state nanopores fabricated by a high-intensity electron beam in ceramic membranes can be fine-tuned on three-dimensional geometry and composition by choice of materials and beam sculpting conditions. For similar beam conditions, 8 nm diameter nanopores fabricated in membranes containing SiO(2) show large depletion areas (70 nm in radius) with small sidewall angles (55 degrees ), whereas t...

متن کامل

Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores

The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focus...

متن کامل

Nanopore sculpting with noble gas ions.

We demonstrate that 3 keV ion beams, formed from the common noble gasses, He, Ne, Ar, Kr, and Xe, can controllably "sculpt" nanometer scale pores in silicon nitride films. Single nanometer control of structural dimensions in nanopores can be achieved with all ion species despite a very wide range of sputtering yields and surface energy depositions. Heavy ions shrink pores more efficiently and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied physics letters

دوره 100 21  شماره 

صفحات  -

تاریخ انتشار 2012